PROMPTING EN INTELIGENCIA ARTIFICIAL GENERATIVA

Módulo 2: Modelos de Lenguaje Amplio

(LLMs - Large Lenguage Models)

Instructor: Daniel M. Casas

Edición: Empresas

<u>Danimcasas.com</u> y Nironet formacio.

Máster en Inteligencia Artificial y Formador Tecnológico danimcasas@inextalent.com

Actualizado: 2025

Módulo 2: Modelos de Lenguaje Amplio (LLMs)

1.¿Qué es un LLM?

Un Modelo de Lenguaje Amplio (Large Language Model, LLM) es un sistema de inteligencia artificial entrenado con cantidades masivas de texto para comprender y generar lenguaje humano de manera coherente y contextualizada.

- Se basan en arquitecturas de **transformers**, un avance clave introducido por Google en 2017.
- Son capaces de realizar tareas complejas como la redacción, traducción, análisis de texto, generación de código o el razonamiento básico.
- Su principal característica es que aprenden patrones complejos del lenguaje, permitiendo no solo predecir la siguiente palabra, sino sostener conversaciones y crear documentos extensos.

Cómo Aprenden los LLMs

El desarrollo de un LLM se realiza en varias fases clave:

1. Entrenamiento Inicial (Pretraining):

- Se alimenta al modelo con ingentes cantidades de texto de Internet, libros y artículos.
- El objetivo es que el modelo aprenda la probabilidad de aparición de palabras en un contexto determinado.

2. Ajuste Fino (Fine-tuning):

 Se entrena al modelo en datos más específicos o de nicho (por ejemplo, documentos legales o lenguaje administrativo) para refinar su estilo y precisión.

3. RLHF (Reinforcement Learning with Human Feedback):

 Se ajusta el modelo mediante retroalimentación humana para asegurar que las respuestas sean útiles, seguras y que estén alineadas con valores éticos y sociales.

Ejemplos de LLMs Actuales

Modelo	Desarrollador	Enfoque Principal
GPT	OpenAl	El estándar más popular en aplicaciones de texto y chat conversacional.
Claude	Anthropic	Destacado por su seguridad, robustez y estilo más "razonado" en sus respuestas.
Gemini	Google	Enfoque nativamente multimodal (capaz de procesar texto, imagen y vídeo).
Llama 3	Meta	Modelo de código abierto muy extendido en proyectos de investigación y desarrollo.
Mistral Al	Mistral Al	Modelos conocidos por ser ligeros y eficientes, ideales para entornos profesionales.

Limitaciones de los LLMs

A pesar de su potencia, los LLMs presentan riesgos y limitaciones que deben conocerse:

- **Sesgos:** Heredan y pueden amplificar prejuicios sociales presentes en los datos de entrenamiento.
- **Alucinaciones:** Tienen la capacidad de **inventar información** que suena totalmente convincente, pero que es objetivamente falsa.
- **Consumo de Recursos:** El entrenamiento y la ejecución de estos modelos requieren una enorme cantidad de energía y una gran potencia computacional.
- **Seguridad y Privacidad:** Existe un riesgo inherente al exponer datos sensibles si se usan modelos no alojados de forma segura o sin las debidas precauciones.

PROMPTING EN INTELIGENCIA ARTIFICIAL GENERATIVA - Empresas Instructor: Daniel M. Casas-actualizado 2025

2. Ejemplos de Prompting Aplicados

Aquí se muestran ejemplos de *prompts* diseñados para explorar las capacidades de los LLMs:

Ejemplo	Objetivo del Prompt	Prompt Sugerido
Ejemplo 1	Comparación de estilo	Redacta una explicación clara y formal sobre qué es un acta administrativa. (Recomendación: Ejecutar este prompt en dos modelos diferentes y comparar diferencias de estilo y claridad.)
Ejemplo 2	Razonamiento con contexto	Actúa como un profesor universitario. Explica en 5 puntos las ventajas y los riesgos que presentan los modelos de lenguaje en el contexto de la administración pública.
Ejemplo 3	Traducción administrativa	Traduce el siguiente texto de castellano a gallego manteniendo un tono administrativo formal: [Pegar texto del documento a traducir].

3. Resumen del Módulo

- Los LLMs son sistemas entrenados con volúmenes masivos de texto que utilizan la arquitectura Transformers para generar lenguaje humano.
- Su aprendizaje se basa en un proceso que incluye el *pretraining* (entrenamiento inicial), el *fine-tuning* (ajuste específico) y el **RLHF** (refuerzo con *feedback* humano).
- Los modelos más relevantes son GPT, Claude, Gemini, Llama 3 y Mistral.
- El uso en el sector público debe ser **crítico y responsable**, ya que estos modelos tienen limitaciones importantes como los **sesgos** y las **alucinaciones**.

4. Práctica (Entregable)

Actividad Módulo 2 – Análisis Comparativo de LLMs

El objetivo de esta práctica es evaluar la calidad y el estilo de respuesta de dos modelos de lenguaje diferentes para una tarea administrativa.

Pasos a seguir:

- 1. **Escoge dos LLMs diferentes** (ejemplo: ChatGPT y Claude, o ChatGPT y Gemini).
- 2. Lanza el mismo *prompt* en ambos modelos:
 - "Redacta un comunicado oficial sobre la implantación de un nuevo servicio digital en un ayuntamiento."
- 3. Copia los dos resultados en un documento Word/PDF.
- 4. **Realiza un análisis comparativo** basándote en las siguientes preguntas:
 - o ¿Cuál de los dos comunicados es más claro en su mensaje?
 - ¿Cuál tiene un mejor tono administrativo (formal, objetivo, preciso)?
 - ¿Detectas algún error de coherencia o alguna exageración (alucinación) en las respuestas?
- 5. **Conclusión:** ¿Qué modelo utilizarías en tu trabajo diario para este tipo de tarea y por qué?

Formato de entrega: Documento en Word o PDF subido a la plataforma Moodle.

5. Fuentes Recomendadas (Vídeos y Lecturas Complementarias)

Fuente / institución	Título / Descripción	URL
DeepLearning.A I + OpenAI	ChatGPT Prompt Engineering for Developers (curso corto)	https://www.youtube.com/watch?v=tRvcAd qsJWo
Stanford (CS224N 2023)	Lecture 10 – Prompting & Reinforcement Learning from Human Feedback	https://www.youtube.com/watch?v=SXpJ9 EmG3s4
MIT (6.S087, 2024)	Foundation Models & Generative AI (playlist oficial del curso)	https://www.youtube.com/playlist?list=PLX V9Vh2jYcjbnv67sXNDJiO8MWLA3ZJKR
MIT Sloan	Primer on ChatGPT (incluye mejores prácticas de prompting)	https://www.youtube.com/watch?v=4fThho oNvA0
Harvard (HILT)	Harvard Generative Al Tools: Demo and Discussion (sección sobre prompting/temperat ure)	https://www.youtube.com/watch?v=61zn8Q 6IK08

PROMPTING EN INTELIGENCIA ARTIFICIAL GENERATIVA - Empresas Instructor: Daniel M. Casas-actualizado 2025

Harvard (CS50x 2025)	Artificial Intelligence (incluye sección de Prompt Engineering)	https://www.youtube.com/watch?v=1HuD2r yeOLg
DeepLearning.A I + OpenAI	Building Systems with the ChatGPT API (aplica prompting en sistemas)	https://www.youtube.com/watch?v=BunES RhYhec
MIT IAP / AI ML Club	Next-Generation Prompt Engineering (demo + discusión)	https://www.youtube.com/watch?v=ML5zD g5SKzY
MIT (6.5940, 2023)	Efficient Fine-tuning and Prompt Engineering	https://www.youtube.com/watch?v=vOPww RCZ8q8